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This paper studies learning in strategic environment using experimental data 

from the Rock-Paper-Scissors game. In a repeated game framework, we explore the 

response of human subjects to uncertain behavior of strategically sophisticated 

opponent. We model this opponent as a robot who played a stationary strategy 

with superimposed noise varying across four experimental treatments. Using ex-

perimental data from 85 subjects playing against such a stationary robot for 100 pe-

riods, we show that humans can decode their strategies, on average outperforming 

the random response to such a robot by 17%. Further, we show that human ability 

to recognize such strategies decreases with exogenous noise in the behavior of the 

robot. Further, we fit learning data to classical Reinforcement Learning (RL) and 

Fictitious Play (FP) models and show that the classic action-based approach to lear-

ning is inferior to the strategy-based one. Unlike the previous papers in this field, 

e.g. Ioannou, Romero (2014), we extend and adapt the strategy-based learning 

techniques to the 3×3 game. We also show, using a combination of experimental 

and ex-post survey data, that human participants are better at learning separate 

components of an opponent's strategy than in recognizing this strategy as a whole. 

This decomposition offers them a shorter and more intuitive way to figure out their 

own best response. We build a strategic extension of the classical learning models 

accounting for these behavioral phenomena. 
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Introduction 

 

Decision-making in strategic environments appears in the core of many economic prob-

lems, ranging from efficient contracts [Li, 2017] to oligopolistic markets [Doraszelski, Lewis, Pa-

kes, 2018; De Roos, 2019] and agent-based interaction [Zohreh, 2012]. However, human abili-

ties to cope with strategic uncertainty [Brandenburger, 1996] and learn how to best respond 

against a rational opponent are still under-investigated at large. 

The literature on learning in games [Erev, Haruvy, 2013] focuses primarily on the behav-

ior of rational agents who base their updated decisions either on the frequency of opponents' 

plays (Fictitious Play (FP) type models, [Fudenberg, Levine, 1999]) or on the relative perform-

ance of own strategies (Reinforcement Learning (RL) type models [Sutton, Barto, 2017]). While 

these models have been remarkably successful in explaining the dynamics of learning and non-

equilibrium behavior, they face a new kind of challenge when applied to learning against so-

phisticated opponent. Such opponents take account not only of the past actions of the opponents 

actions, but hypothesise over a set of behavioral rules which players can learn in the process of 

strategic interactions [Milgrom, Roberts, 1991; Camerer, Ho, 1999]. 

Optimal behavior against such players should be more than simple actions and, according, 

to Hanaki (2004), it may suffice to make strategies that condirion actions to th history of the 

previous round as first proposed by Aumann (1981). For the 2×2 games, the set of strategies con-

structed in that way provides a manageable learning model because the total number of distinct 

decision rules does not exceed 25 = 32, but for larger games the number of such rules grows too 

quickly to be tractable by a human agent2. To provide a tractable model of learning in such cases, 

we propose and implement splitting of human decision process into simpler «elementary strate-

gies» (see section 2.2) for a wider class of games than 2×2. Those «elementary strategies» are a 

very natural basis to think about boundedly rational decision rules in general. 

The present paper explores human abilities to learn in a strategic setting by means of an 

experiment where human subjects encounter a robot with a fixed complexity of behavior. We use 

Rock-Paper-Scissors (RPS) game since it is a 3×3 game with no best reply in pure strategies 

(Rock defeats Scissors, Scissors defeat Paper, Paper defeats Rock), resulting in a unique Nash 

                                                 
2 In an N×N action game, the number of possible 1-step histories is 2N . A complete «finite automa-

ton» maps each history to one of N  next actions: 
2:A N N→ . Two automata are distinct if they differ in 

any action after any history. So the total number of different automata is 
2NN  (selecting one of N possible 

actions for each of 2N  histories). For N = 2 this equals 16, but even for N = 3 it amounts to 19683, etc. 
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equilibrium in mixed strategies. We introduce a robot player in order to fix the strategy and level 

of sophistication of an opponent to the human players, which allows us to see check whether 

(and how fast) she learns the optimal strategy against such a stationary opponent.  

Human participants of our experiment (N = 85) were (truthfully) informed they are playing 

against a robot who is pre-programmed to play a particular strategy’ but were not told what 

this strategy is. The task of human subjects was to decode this strategy in the course of 100 ro-

unds, trying to beat the robot by the largest possible margin over the Nash equilibrium per-

formance of 33% of gains. After the game, they were asked to complete a short questionnaire 

about themselves and to report the strategy they thought the robot was programmed to play. 

We have implemented four treatments, which differ by the level of «noise». That is, the robot 

played the Nash equilibrium uniform mixed strategy with fixed probabilities of 0.2, 0.4, 0.6 and 1, 

and behaved according to its pre-programmed strategy with complementary probability. Our 

experimental data shows that human players are indeed able to cope with strategic uncertainty 

and beat the robot on average by 17%, the most successful participant winning as many as 75 out 

of 100 trials (in contrast to random guesser’s 33 percentage of winning). Further, efficiency of lear-

ning is inversely related to the level of noise, and the lower the noise was, the more components 

in the Robot strategy have the participants successfully decoded in their reports. 

We extend the setup of Ioannou and Romero (2014) for the 2×2 games to the symmetric 

game with 3 strategies and compare two action-based learning algorithms (Weighted Fictitious 

Play [Cheung, Friedman, 1993) and Reinforcement Learning [Roth, Erev, 1995]) to their strate-

gic extended counterparts. We build such extensions by incorporating «elementary strategies» 

of full finite automation to original learning algorithms. In our simulations, we run the various 

algorithms on the same playing histories that were encountered by our subjects during the ex-

periment. We treat what models would play in those situations as their predictions. Comparing 

these modeled actions to those chosen by the human subjects using a prediction error metric (the 

Brier-score [Brier, 1951])3. We confirm that strategic models outperform the action-based, and 

Strategic RL does so by a wide margin. 

The rest of the paper is organized as follows. Section 1 briefly overviews the related litera-

ture. Section 2 describes the setting of the experiment, notions of analysis, modeling and hypot-

heses, Section 3 offers a general overview of experimental results and relates them to the level of 

noise and reported strategies of the robot. Section 4 fits the action-based and strategic learning 

models to our experimental data and compares their predictive power. Final section summarizes 

our findings and concludes. Details of the experimental setup and technical results are collected 

in the Appendix. 

 

1. Related literature 
 

Current state of affairs, terminology, comparisons. Models of learning in games are now 

widespread in theoretical [Fudenberg, Levine, 1998; Nachbar, 1990], experimental [Roth, Erev, 

1995; Camerer, Ho, 1999; Ioannou, Romero, 2014], and empirical literature [Doraszelski, Lewis, 

Pakes, 2018; David, De Roos, 2019]. The classical way to model strategic behavior in repeated in-

teraction, which dates back to Cournot, is based on best response to the current statistically 

                                                 
3 A companion paper [Chernov, Susin, Cheparuhin, 2020] discusses and develops this technique in 

detail. 
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prevalent action of the opponent. Here action as «units» of learning refer to particular option 

which could be chosen e.g. «e2-e4» in chess or «fold» in poker. Furthermore, there are about 

two dozen learning models that differ from the classical one either by how the a priori probability 

distribution is chosen or by the restrictions that are imposed on the rationality of the agent. 

The classical rational rules based on Bayesian updates stem from the Fictitious Play (hen-

ceforth FP) [Brown, 1951] and most bounded rationality rules rely on the Reinforcement Learning 

(henceforth RL) [Roth, Erev, 1995]. To imitate the tendency among humans to break cycles of de-

feats, a weighted version of FP and RL use mixed strategies defined over the space of actions, i.e., 

moves. 

Another approach to learning is to try to reproduce human behavior in difficult strategic 

situations [Camerer, 2018] by introducing complex cognitive strategies, e.g. pattern recognition 

[Spiliopoulos, 2012], conditional strategies [Hanaki at al., 2018], forward-looking beliefs [Duersch, 

Kolb, Oechssler, 2010]. All of these can be called «strategic» or conditional learning, in contrast to 

the earlier action-based learning, because the agent focuses her attention not on her own and 

partner's actions, but on strategies, i.e., rules or functions that map conditions (history) into 

new actions (see related extensive review on learning in [Nachbar, 2009]). 

Conditional strategy-based models also relate to the experimental paper on finite auto-

mata, (first proposed by Aumann, 1981) by Hanaki (2004), who introduces conditional learning 

strategies into the model of learning (see also [Ioannou, Romero, 2014]). 

In measuring «quality» of the learning models, we borrow from Arifovic, McKelvey, Pev-

nitskaya (2006), who compare learning algorithms on out-of-sample data by predictive metrics. 

They find that almost all mentioned action-based models perform worse than a random predic-

tor in certain games. 

Also, Mathevet and Romero (2012) conduct crosswise comparisons between the two main 

classes of learning models on experimental data with several 2×2 games. They also compare the 

typical behavior of models and humans in those games, however, at a higher level of aggregation 

than we do. 

All this literature provides sufficient evidences that conditional strategies and predictive 

metrics are useful to understand learning, and we contribute to this literature by extending it to 

3×3 games using new data, and exploring playing trajectories of the most successful learners. 

 

2. Setup and notations: actions against strategies 

 

2.1. Notions and notations: playing rules and history 

 

We are now turning to a formal description of the experimental task. Two players 

{ }1,2=I  interact during a finite number of periods 100T = . Their interaction constitutes a 

normal form repeated game { }, , ,G A u T= 〈 〉II , where { }, ,a Rock Paper Scissors A∈ ≡ , 

{ } ( ) ( ){ }1 1 2 2 1 2, , ,u u a a u a a≡  are two instant payoff functions, whereas A A A= ×I  is the set 

of actions' profiles, { } { }, ,  :  1,2iA a Rock Paper Scissors i= =� . Let 
{ }1  t
ix −

 denote the ac-

tions of the previous round that are taken by the player i  to formulate his or her decision in the 

current round. In case of action-base decisions, this is ( ) { }1 1 ,  ,t t
i ix a Rock Paper Scissors− −= ∈ , 
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while in the case of one-period strategies, this is one of 9 pairs of player's and opponent's actions: 

( )1 1 t 1
i,t t

i ix a a− − −
−=  where 1 t 1

i,t
ia a A A− −

− ∈ ×  one of the profiles of actions taken by both players. 

In this paper we focus on instant history denoted by 1th − : ( )1 1 1, ,t t t
i ih a a− − −

−≡  Complete history 

( )1 1 1t tH h h− −≡ …  consists of a sequence of all previous actions, but we limit attention to 

1th −  or its simple aggregates like 
1

1

t t
t

h
−

=∑ . This is consistent with the literature and the intui-

tion about the limited information processing abilities of human subjects. 

Situations in symmetric games like RPS may be further simplified thanks to the anonymity 

property of actions. Anonymity here means that re-labeling the actions will not change strategies: 

what matters is how players react to Win, Tie or Loss, but it does not matter whether the winning 

(tying, losing) action was Rock, Paper or Scissors. Hence, the «current situation» tx  can be descry-

bed simply as: ( ), , .t
i i ix Win Tie Lose∈  

It is convenient to describe actions and strategies using modular arithmetic notation 

(modulo-3). It means that we enumerate the initial set A  of actions as 

{ } { }, , 0,1,2 ,A Rock Paper Scissors= =  then any action a A∈  becomes equivalent to other 

actions by the circular modular rule:  

( ) ( ) ( ) ( ) ( )3 m  3 ,  2 m  3 1 m  3, 1 m  3 2 m  3.a od a a od a od a od a od+ = + = − + = −  

This game itself invites the player to think symmetrically in the modulo-3 arithmetic terms 

because Rock beats Scissors, Scissors beat Paper and Paper circularly beats Rock. Players need 

not care which particular action has been successful in the past. Verbal reports of the participants 

of our experiment after the game (see the next section) often demonstrate such symmetric per-

ception of the current situation tx . 

Throughout our paper, a «conditional strategy» will be defined as the transition function 

from instant history to present period action4: 

(1)  ( )1 t 1
i: , .t

i ia a A− −
−ξ →  

In the logic of modular arithmetic, «Stay» will denote the action repeating the previous 

action, «Up» – the action that beats the previous action chosen by the same player (e.g. if the 

                                                 
4 Theoretically speaking, conditional strategies can be more complicated. Typically, they are formali-

zed as finite automata, which determines how should the player change her action (state) depending on 

the action of the opponent.  Formally the automaton is a quadruple { }0 , , ,conditional i i iS q Q f= ξ , where 
0q  

represents the initial state (unnecessary in our case, where the first transition occurs randomly), iQ  is a set 

of states, output function :i i if Q A→  is an assignment of an action to every state, and :i i iQ A Qξ ⋅ →  

is the transition function which maps the initial state to the new state depending on the action taken. 

Concrete automata used here contain only actions as states: { }1, 1,2t
i iQ A i−= =  and the output function 

is the same as transition function. Hence the finite automaton in the RPS game can be fully described by 

iξ  and 
/ 1t t

iA −
 only. 
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previous action was Rock, then the «Up» action is Paper), «Down» – the action that would be 

beaten by the previous one (and beats the «Up» action, i.e. Scissors in the previous example). 

A very simple, unsophisticated player may expect her opponent just to repeat the previous 

move 1t ta a+ = . Best reply against such a strategy will be «Up». Alternatively, a Naive player may 

think not about the opponent, but about own success and play Win Stay→ , Lose Shift→ , 

where Shift may mean either Lose Up→  or Lose Down→ . In the light of the evidence of Wang, 

Xu, Zhou (2014) where humans play with humans, we define the Naive-learner's strategy of 

switching ( → ) as:  

(2)   : ,  ,  .Naive Win Stay Tie Down Lose Up→ → →  

In our experiment, one of the players is a Robot who is programmed to play the best reply 

strategy against such Naive player. Hence, the Robot playing strategically in terms of the Naive 

opponent's actions, uses: 

(3)   : ,  ,  .Robot Win Up Tie Stay Lose Down→ → →  

What should be the winning strategy of a human player against such a deterministic Ro-

bot? A moment reflection reveals that the OptAR (Optimal-Against-Robot) strategy is: 

(4)   : ,  ,  .OptAR Win Down Tie Up Lose Stay→ → →  

For instance, if the winning strategy of a Robot player was (without loss of generality) 

Rock, it is supposed to go Up to Paper, hence an optimal strategy of the human player is to stick 

to her previously played Scissors which will be winning now. Similarly, if the Robot has lost with 

Rock, he is supposed to go Down to Scissors, so the optimal strategy of a human who played Pa-

per is to chase it Down to Rock. Finally, under Tie in Rock, the Robot is meant to stay, so it is op-

timal to mount Up to Paper to beat it. 

 

2.2. Experimental setup 

 

In our experimental settings, we ask participants to repeatedly play against the prepro-

grammed Robot opponent in the Rock-Paper-Scissors game. 

The Rock-Paper-Scissors was chosen for our experiment because is a special type of game 

for learning dynamics. Only in this type of games (in stark contrast to various games from prisoners' 

dilemma to cooperation and chicken games) learning agent cannot guarantee some minimal pay-

off by just imitating the opponent instead of actually learning, as shown by Duersch, Oechssler, 

and Schipper (2012). 

A second major design choice that separates this work from Ioannou and Romero (2014) 

is that in their work the focus is on how human players interact in a game, hence their learning 

dynamics is endogenous to the realized game path. We ask a more specific question: «when did 

learning happen, depending on the noise in the treatment, and how is it connected to recognition 

of the rule». Such inferences cannot be made when our subjects play against each other, but it 

is easy when one of the players is directly programmed. 

Finally, for our experimental design purposes, it is important to calibrate the complexity of 

the rule so that the learning happens during the whole experimental session. If our rule is too 
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simple and our subjects learn it during the first 10% of the play – only those 10% will be «lear-

ning» data while the rest is much less interesting «best response» data. If the rule is too hard and 

very few subjects learn anything during the experimental session – again we are left with less 

useful data than if the learning complexity is just right for a feasible experimental session. 

Thus, we calibrate the complexity in the following manner. Consider a Robot endowed 

with deterministic strategy (3) only in some random periods and plays equilibrium mixed strate-

gy of 1/3 to each pure strategy otherwise5. Then we could vary the level of nonrandomness by 

treatment. Optimal response against such Robot remains the same as without noise because 

noise per se does not change anything in the deterministic component of the strategy of a Robot, 

hence optimal behavior against it remains the same. Also, to use OptAR our player need not have 

any priors about her opponent Robot: OptAR is just the maximal-expected-payoff strategy in any 

state. 

We can look at the frequency of OptAR moves during any personal trajectory, and simply 

check at which moment, does it exceed 1/3. Once traced, this moment could be taken as the 

«learning point». However, typically the players never stop making some moves that look ran-

dom, which can be attributable either to continuous experimentation or to random noise. Follo-

wing for setup description, we need to introduce the extensions of classical learning models 

that be able to capture the behavior of OptAR Robot with noise. 

 

2.3. Search for a «good» learning algorithm:  

actions, strategies and sub-strategies 
 

2.3.1. Benchmarks and classification 

 

To model human behavior, there exist a broad variety of algorithms, that we classify for 

the purpose of this paper in only two respects6. 

First, we can distinguish the belief-based algorithms that explore the opponent's behavior – 

from those based on own wins/fails [Fudenberg, Levine, 1998; Nachbar, 1990]. In other words, 

a player can either learn the opponent's actions or learn their own success per se. Among the be-

lief-based class, we focus below on the Weighted Fictitious Play (WFP, see [Cheung, Friedman, 

1993]7. Alternatively, the Reinforcement Learning model (RL, see [Roth, Erev, 1995]) does not use 

any beliefs about the opponent or direct utility maximization. In response to history, RL generates 

a «propensity score» for each own action: the higher was the frequency of wins from a certain 

action, the higher will be the probability to use this action again. RL and similar learning algo-

rithms are more sensitive to payoffs than to actions per se, unlike the belief-based schemes. 

Second, both classes mentioned can be applied either to actions { }, ,a Rock Paper Scissors∈ , 

or to strategies. Here we should note that the rule of successful OptAR strategy in principle can 

                                                 
5 Thus, it plays action according to Robot rule sometimes «intentionally» and sometimes by chance. 
6 See other possible classifications in Nachbar (2009). 
7 The standard FP algorithm just uses the whole current history of the opponent’s actions «frequen-

cies» as the predicted probabilities of her next action and plays the best response to these. WFP differs 

from FP by playing a stochastic best-response, rather than a deterministic one, to undermine the oppo-

nent's learning capacities presumably for strategic reasons. WFP better suits our purposes, being com-

parable with other stochastic algorithms and humans. 
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be decomposed into 3 «successful sub-strategies» .jσ  These are three distinct moves that can 

bring positive expected payoffs, namely, action t
ia  of player i  should be modified as: 

( ) ( )1 1: ,  i.e.,  1  3  t t t t
I i R i iLose Stay a a mod a a− +

−σ → = − ⇒ =⎡ ⎤⎣ ⎦ , 

( ) ( ) ( )1 1: ,  i.e.,  1  3 1   3  t t t t
II i R i iWin Down a a mod a a mod− +

−σ → = + ⇒ = −⎡ ⎤⎣ ⎦ , 

( ) ( )1 1: ,    i.e.,  1   3 .t t t t
III i R i iTie Up a a a a mod− +

−σ → = ⇒ = +⎡ ⎤⎣ ⎦  

Each strategy ξ  can be decomposed in a similar manner, for instance, Robot strategy is 

{ }, ,R Lose Down Tie Stay Win Upξ = → → → , consists of three sub-strategies. Since these 

three sub-strategies can be learned (or not) separately, the three sub-strategies of the Robot 

can be expressed in terms of non-anonymous instant history ( )1 1 1,t t t
i ih a a− − −

−= . In these terms, 

a strategy ξ  is a composite of elementary strategies s  – simple functions from possible «states 

of the world» to actions A . Such a collection of arguments and outcomes ( )1 1,t t t
i i ia a a− −

− −→  

can be perceived as vectors ( )1 1, ,t t t
i i ia a a− −

− − , where the third component is the opponent's 

today reaction to yesterday’s situation. We have denoted 0 Rock≡ , 1 Paper≡ , 2 Scissors≡ . 

Table 1 presents two particular, Robot and OptAR, complete strategies ,R Oξ ξ  both in anony-

mous ( σ ) or in «named» (action-specific s ) elementary strategies: 

Table 1.  

Components of Robot's strategy ξR  and Optimal strategy ξO
 

Anonymous 
Oξ  σI ≡ Lose → Stay σII ≡ Tie → Up  σIII ≡ Win → Down 

s10 ≡ (0, 1, 0) s13 ≡ (0, 0, 1) s16 ≡ (0, 2, 2) 

s11 ≡ (1, 2, 1) s14 ≡ (1, 1, 2) s17 ≡ (1, 0, 0) Named 
Oξ  

s12 ≡ (2, 0, 2) s15 ≡ (2, 2, 0) s18 ≡ (2, 1, 1) 

Anonymous 
Rξ  σIV ≡ Lose → Down σV ≡ Tie → Stay σV I ≡ Win → Up  

s1 ≡ (0, 1, 2) s4 ≡ (0, 0, 0) s7 ≡ (0, 2, 1) 

s2 ≡ (1, 2, 0) s5 ≡ (1, 1, 1) s8 ≡ (1, 0, 2) Named 
Rξ  

s3 ≡ (2, 0, 1) s6 ≡ (2, 2, 2) s9 ≡ (2, 1, 0) 

 

Similarly to ,R Oξ ξ  (Here index O = Optimal) we can describe complete strategy Nξ  (in-

dex N = Naive). Of course, there can be many others – in principle any learning algorithm should 

consider all of them, instead of several ones, predetermined by the researcher. However, humans 
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cannot compare thousands of hypotheses in the course of a game. To simplify the task, we de-

compose the complete strategy into sub-strategies, thus reducing the space of hypotheses that 

the human agent needs to explore. 

Indeed, looking at Table 1 and trying all possible combinations, we see that a human 

seeking OptAR has to explore 27 named elementary strategies { }1 27,...ks s s∈  instead of the 

set of all 93  possible strategies – and this is exactly what we do. In principle, any complete 

strategy ξ  can consist of various combinations of s . Therefore, the space of all named com-

plete strategies is very (!) large: 93 . Hardly during 100 rounds, our humans could learn the op-

ponent trying all hypotheses among these 93  named strategies. Instead, we have programmed a 

version of a strategic learning algorithm that learns 27 sub-strategies (importantly, sub-stra-

tegies are often reported by humans as will see). 

Another possible way to reduce the space of strategies would be to learn only among 

anonymous strategies. There are not too many, 9 of these. Indeed, in addition to Naive, Robot, 

OptAR already described, one can consider only 6 other mappings from anonymous situations 

{ }, ,Win Tie Lose  to anonymous actions { }, ,Up Stay Down . Yes, as we have explained already, 

the symmetry of our RPS game and the symmetry of our Robot suggests that the anonymous 

strategic approach can be quite relevant in our specific setting of the RPS game. Moreover, the 

further effort-economizing possibility is to model learning as separate learning of sub-strategies 

responding to 3 separate anonymous «states of the world» { }, ,Win Tie Lose . Yes, we have seen 

that enough players did report their finding in such terms, as anonymous sub-strategies. 

The reason why we decided to define algorithms on named ones instead of unnamed ones 

is the possibility of generalization of such algorithms. Let us consider any deviation from the RPS 

game, e.g. an asymmetric payoff. We argue that the relevance of this approach would disappear 

if we make payoffs asymmetric among Rock-Paper-Scissors actions, or our players would expect 

asymmetric love for certain actions from Robot. Our learning algorithm should be universal, not 

programmed to target and find the specific answer «symmetric Robot» hidden by the research-

ers in this specific setting! This argument works for any deviation from the basic game. 

The distinctions in approaches are represented in Table 2 as a taxonomy. 

Table 2.  

Taxonomy of the learning models 

Models Belief-based: Reinforcement-based: 

3-action-based: Weighted Fictitious Play Reinforcement Learning 

strategy-based: Strategic Weighted Fictitious Play Strategic Reinforcement Learning 

 

Now we should further explain our specific «strategy-based versions» of algorithms men-

tioned in Table 2. Following Ioannou and Romero (2014), we extend WFP and RL from the small 

set of actions { }, ,A Rock Paper Scissors=  – to a larger set, containing all named elementary 

strategies:  

(5)  { }1 27,..., .S s s=  

Such modifications, called «strategic versions» of FP or RL algorithms [Hanaki, 2004]. 
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We modify the original «strategic» version by dividing ξ  (a compound from 3 sub-strate-

gies) into elementary strategies s . Among a enormous variety of possible learning algorithms, 

we present here four ones, already known in the literature and simple enough to implement and 

explain. In particular, the simplification is that our «strategies» do not use depth-2 or deeper 

history: they are based on instant histories only. 

 

2.3.2. Models and extensions 

 

For introducing the internal mechanic of learning models let's describe the rules ξ  more 

formally. Since ( ) { }1 1, , ,t t
i i i i iu a a Win Tie Lose− −

− ≡  we quantify payoffs as ( ) 0;u Lose =  

( ) ( )1, 2.u Tie u Win= =  We will also use those payoffs as rule modifiers in our further modu-

lar calculations. Summation of actions and payoffs may look odd to a game theorist but it sim-

plifies notation and implementation in code. Next, the «Naive» rule (here index N = Naive) N
iξ  

in these terms is defined through the transition  

(6)  ( ) ( )( )1 1 1 1, 1 m 3.N t t t t
i i i ih a u a a od− − − −

−ξ = + +   

To explain, let us interpret «Win→ Stay» sub-strategy of the Naive player defined in 

eq. (2). For example, in the 1t −  the player has chosen 1 0t
i R ka oc− = =  and got 

( )1 1, 2t t
i i Wu a na i− −

− = =  (by our notation). Now, rule N
iξ  produces 0 + 2 + 1 = 3, whereas 

3 0 m  3od= , thus the rule prescribes to Stay (zero shift means «repeat the previous action»). 

Similarly, one can check that this formula N
iξ  also reflects two other sub-strategies ,Tie Down→  

Lose Up→  in all situations Rock, Paper, Scissors. 

Another strategy (  ,  ,  Win Up Tie Stay Lose Down→ → → ), defined in eq. (3) (hen-

ceforth «Robot», it is the best response to the previous one and describes our Robot) can be 

written with the modular arithmetic as:  

(7)  ( ) ( )( )1 1 1 1, 1 m  3.R t t t t
i i i ih a u a a od− − − −

−ξ = + −  

Finally, the «Optimal» against such Robot strategy ( ,  ,  Win Down Tie Up→ →  

Lose Stay→ ) from eq. (4) becomes 

(8)  ( ) ( )( )1 1 1 1,  m  3.O t t t t
i i i ih a u a a od− − − −

−ξ = +   

Comparing these three strategies 
j
iξ , one can see that they differ by 1, exhausting all 3 

possibilities Up, Stay, Down. Now when we have an intuition of transition mechanics of strategy 

we could write down two classic learning models and our extension of them (the code is available 

from the author). 

Weighted Fictitious Play (WFP). In the WFP model [Cheung, Friedman, 1993], each 

player i  has three counters t
ikκ , one for each opponent's action { }0,1,2k ∈ . Starting with 
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0 0ikκ = , at each period time { }1,2,t T∈ … , these three counters are updated (enlarged or 

not). Namely, based on yesterday history 1th − , we enlarge the thk  counter t
ikκ  by 1 when the 

opponent's observed action 1t
ia −

−  is equal to this k : 

( ) { }
1

1 1
1

1,    
: 0,1,2 .

0,    

t
it t t t

ik ik ik t
i

if a k
h k

if a k

−
−− −

−
−

=
= = + ∀ ∈

≠
⎧
⎨
⎩

κ κ κ  

Belief t
ikγ  of player i  that his/her opponent ( )i−  will choose action k  at period t  is de-

fined as the relative weight, i.e., the empirical frequency of this action, aggregating the oppo-

nent's complete observed history 1tH − : 

( ) { }1
2

0

: 0,1,2 .
t
ikt t t

ik ik
t
ijj

H k−

=

κγ = γ = ∀ ∈
κ∑

 

Unlike deterministic FP that reacts only to the most probable action of the opponent, the 

WFP algorithm reacts to random actions, appearing with probabilities t
ikγ . It always chooses 

the best response, which is an offset +1 to each action. Consequently, based on history 1th − , our 

WFP generates a random action ia , where probability ( )1m 3i k odp +  to choose an action number 

( )1m  3k od+  is:  

( ) ( ) { }1
1m  3 : 0,1,2 .t t t

iki k odp H k−
+ = γ ∀ ∈  

Weighted Strategic Fictitious Play (WSFP). The transition from the WFP to the WSFP, 

i.e., from actions to strategies is achieved by modifying the counter for the opponent's strategy. 

Instead of three counters t
ikκ  for the opponent's actions, now we update 27 counters t

imη , one 

for each named elementary strategy { }1 27,...t
ims s s− ∈  of the opponent (see Table 2). In other 

respects, WSFP algorithm is programmed alike WFP; it updates these 27 beliefs about the oppo-

nent. Namely, it adds 1 to thm  current counter t
imη  when the yesterday observed opponent's 

conditional strategy takes the elementary value ms , otherwise the counter remains the same: 

( ) ( )
( ) { }

2 2 1
1 1

2 2 1

1,     , ,
: 1,...,27 .

0,     , ,

t t t
i i i mt t t t

im im im t t t
i i i m

if a a a s
H m

if a a a s

− − −
− −− −

− − −
− −

=
η = η = η + ∀ ∈

⎧
⎨
⎩ ≠

 

Frequencies of opponent's elementary strategies are beliefs ( )t t
ik is−γ  (that the opponent 

will play the named elementary strategy). The beliefs are based on 27 counters t
imη : 

( )
( )

( )1
27

1

  1,...,27 .
t
imt t t

im im
t
ijj

H m−

=

ηγ = γ = =
η∑
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Based on history 1tH − , our WSFP generates a player's random action ia  alike WFP. Again, 

probability ( )1m  3ip k od+  to choose an action ( ) { }1 m  3 0,1,2ia k od= + ∈  with number 

( )1m  3k od+  is based on the beliefs, with an offset +1 to the opponent's expected action, 

which is the third component of thm  elementary strategy vector ms :  

( )
( ) ( ) ( )( )

1 1

1 1

| , ,

1m  3 : | , , .
t t
i i j

t
ikt t t

i i i mt
ijj a a j s

p k od m a a k s
− −

−

− −
−

∈

γ+ = ∀ ∈
γ∑

 

Reinforcement Learning. Reinforcement Learning models [Roth, Erev, 1995] assume 

that players adjust their strategies based on their past performance. Similar to beliefs t
ikγ  in 

the WFP model, now we update 3 counters, which are «propensities» t
ikπ , to generate probabili-

ties to play each action { }0,1,2a ∈ . Each player i  at each period t  updates her propensity t
ikπ  

to play action k  (starting from equal initial 0 1ikπ = ). The main difference from WFP is that now 

3-component vector t
iπ  is reinforced based on own strategies, not the opponent's ones. Rein-

forcement also exploits own payoffs instead of opponent's frequencies, and propensities are 

updated as follows:  

( ) { }
1 1

1
1

,    
: 0,1,2

0,           
,

  

t t
i it t

ik ik min t
i

u a if a k
u k

if a k

− −
−

−

=
π = π − + ∀ ∈

≠
⎧
⎨
⎩

 

where ( )( ) { }1 0,1,2t
i minu a u− − ∈  is the excess payoff from the player's yesterday action 1t

ia −  

over the minimal payoff ( ) ( ) ( ){ }min 0 , 1 , 2 1minu u u u= = − . If some action has not been 

selected in this round, then its propensity remains unchanged. Similarly to FP, moves are ran-

dom and the player's probability t
ikp  to choose any strategy k  in the next round is assigned as 

thk  relative propensity:  

( )
{ }

1

:  0,1,2 .
t
ikt

ik J t
ijj

p k

=

π= ∀ ∈
π∑

 

Strategic Reinforcement Learning (SRL). The transition from the RL to its strategic 

version SRL, alike transition from the WFP to the WSFP, is achieved by modifying the counters. 

Instead of three counters t
ikπ  for the player's actions, now we update 27 counters – propensi-

ties t
imζ  for using each elementary strategy ms : 

( ) ( ) ( )
( )
1 2 2 1
31 1

2 2 1

,    , ,
 :  

0,   , ,

,

.

t t t t
m i i i mt t t t

im im im min t t t
i i i m

u s if a a a s
H u

if a a a s

− − − −
−− −

− − −
−

=
ζ = ζ = ζ − +

≠
⎧
⎨
⎩

 



2020 HSE Economic Journal 515 

 

For { }1,...,27 .m∀ ∈  If a strategy has not been selected in this round, then its propensity 

remains unchanged. Again, the player's actions are random, and the probability of choosing a 

strategy ms  with action 3
t
i ma k s= =  in a situation ( )1 1 1,t t t

i ih a a− − −
−=  in the next round is simi-

lar to RL version but normalizes all propensities related to such situations (instead of beliefs): 

( )
( ) ( ) ( )( )

1 1

1 1

| , ,

:  | , , .
t t
i i j

t
ikt t t

i i i mt
ijj a a j s

p k m a a k s
− −

−

− −
−

∈

ζ= ∀ ∈
ζ∑

 

 

2.4. Hypotheses 

 

Our apriori expectation is that complete automaton structure cannot be learned during 

a relatively short period of 100 rounds. As we have mentioned in the introduction and section 

2.2, there are too many (around sixty thousands if considering the initial starting state) automata 

Rξ  in a 3×3 game, so either people cannot recognize them at all or learn it only by parts through 

sub-strategies σ . 

Almost all previous literature adopts the default theoretical assumption that any learning 

process can be decently approximated by action-based dynamics. Our Robot rules are constru-

cted to outperform the simple action-based reinforcement. Therefore, we have two groups of 

hypotheses. The first two focus on the outcome of the experiment for human participants: 

Hypothesis 1: Proportion of wins of human subjects does not exceed the Nash equi-

librium share of 1/3. Essentially, this means that the difficulty of Robot strategy is too high to be 

learned by human subjects. Consequently, humans are not expected to be able to perform better 

or worse depending on the level of noise in the Robot's strategy. Hence our next hypothesis is. 

Hypothesis 2: The level of noise in the Robot strategy does not affect the proportion 

of wins. Section 3 is devoted to testing of these hypotheses. 

The remaining hypotheses concern the quality of algorithmic predictions of human sub-

jects' behavior. Three alternative metrics are considered: (1) similarity of the outcomes of a lear-

ning algorithm to decisions of human players in terms of average payoffs, (2) similarity of algo-

rithmic predictions to the frequency of optimal moves of human subjects, or (3) similarity of 

learning trajectories of the algorithm and humans (dynamic predictive quality). The last metric is 

the most interesting but also the most difficult computationally. 

Any rational player could be expected to perform at least as well as the Nash equilibrium 

player choosing each strategy with equal probability. We use this player as a benchmark for 

learning, and compare each algorithm to this benchmark. 

To compare our algorithms in three metrics with the benchmark player, we formulate the 

following specific hypotheses. Hypothesis 3: Standard action-based models outperform the bench-

mark player in terms of average payoff in the RPS game. Hypothesis 4: Action-based models 

playing against Robot perform at least as well as strategic-based ones in terms of average payoff 

in the RPS game. Hypothesis 5: Belief-based algorithms predict human behavior better than 

reinforcement-based ones. Hypothesis 6: Algorithms that play better against the Robot pre-

dict human behavior better. 
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2.5. Experiments description 

 

Experiments were conducted in 2018 and 2020 at the Laboratory for Experimental and 

behavioral Economics at the Higher School of Economics (HSE), Moscow8. 

Subjects were given a very general hint: «You play against some Robot programmed to 

play a particular stationary strategy». Nothing was told about the Robot being stochastic or not, 

being maximizing some payoff or not, using any particular depth of history or not. Subjects in all 

treatments were given an assignment to try to guess the strategy of this Robot and over-perform 

it. Summaries of all sessions are presented in Table 3. 

Remuneration consisted of three parts: 50 tokens9 (150 rubles) show-up fee, per-game 

utility payment (0 tokens for loss, 1 for a tie and 2 for a win), and a bonus of 15 tokens for 

every 5 wins after the thirtieth win to stimulate extra-performance against «the correct» algo-

rithm. We used a linear reward scheme for the number of wins exceeding what is expected by 

random guessing (see Appendix for the details). Average payoffs were equal to 5.95 EUR, except 

treatments with high school students, incentivized by prizes like books, increasing in quantity 

and quality according to performance (table 3). 

For Instructions and details see Appendix. Our several treatments exploited a non-balan-

ced sample of subjects (players) with the following descriptive statistics: 

Table 3.  

Sample description and payoffs 

Noise 

level 

Number 

of plrs 

Percent  

of male 

Participants – 

students 

Average 

age 

Min  

wins 

Average 

wins 

Max  

wins 

1 8 38 university 22.8 26 34 39 

0.6 9 33 university 23.8 30 37 50 

0.4 39 44 high school 16.4 25 40 63 

0.4 14 21 university 21.2 31 43 59 

0.2 15 66 university 20.9 26 54 75 

Total 85 42 – 19.4 25 40 63 

 

3. Description of the experimental data:  

everybody tries to learn and some subjects succeed 

 

This section expounds on how our subjects act against the Robot with fixed noise level that 

differs across treatments but implies the same best response for humans. We consider first the 

general observations and answers about whether people learn at all (hypothesis 1). Next, we 

proceed for the survey data analysis and show what aspects of Robot strategy that are explicitly 

formulated by subjects. We contrast this data with the data on the actual play history to comple-

                                                 
8 It used oTree [Chen, Schonger, Wickens, 2016], an open-source platform for running laboratory, 

online and field experiments. 
9 1 token = 3 Russian rubles ≈  0.05 euro at the time of the experiment. 



2020 HSE Economic Journal 517 
 

ment the conclusions about the performance based on payoffs, and check whether noise affects 

this recognition (hypothesis 2). Finally, we explore individual learning trajectories, and try to 

evaluate some counterfactuals. 

 

3.1. General observations 

 

Table 3 shows that the average number of wins increases inversely to the level of noise: star-

ting from 34 with noise level 1 (consistent with Nash equilibrium), the average performance of the 

humans monotonically goes up to 54 instances on average when the noise level drops to 0.2. 

The frequency of wins is significantly different from the theoretical frequency of 1/3 for noise levels 

of 0.2 (Wilcoxon sign rank test statistic 3.81, 0.0015z p= < ) and 0.4 (Wilcoxon 5.13,z =  

0.000p < ), and are not significantly different for higher noise levels. Hence, we state that: 

Result 1: Average number of wins exceeds what would be expected at Nash equi-

librium in cases when the level of noise in the strategy played by the Robot is sufficiently 

low (0.4 or lower). Overall, participants play statistically better than Nash equilibrium player 

and do so more often the lower is noise. Consequently, our hypothesis 1 is rejected. 

Many subjects did recognize some regularities and therefore did learn how to beat the 

Robot in our RPS game. Statistical z tests of this hypothesis based on individual data are provided 

in the App5.1. 

We turn now from average payoffs to the distribution of personal achievements, grouping 

the subjects by treatments. Fig.1 compares four density plots for four treatments with noise 

levels 1, 0.6, 0.4, 0.2 (the less noise the darker is the tone of the bars). Decrease in the level of 

noise apparently provides better possibilities for learning, leading to smaller differences be-

tween individuals. 

 

 

Fig. 1. Frequency of each level of final payoff under different noise levels 
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Observation 1. When noise decreases, both individual payoffs and their spread increase. 

Histograms in Fig. 1 show the distributions of individual payoffs. Coordinate X denotes 

the per-round averaged payoff of each subject, normalized from ( )0,1,2  matrix to ( )1,0,1−  to 

center random guessing around zero. A negative value of coordinate jX  means that this j-s in-

terval of subjects was beaten by the Robot. Positive jX  values correspond to the winners, an 

empty interval means that nobody got payoffs in this range. Coordinate Y denotes the share (per-

centage) of a related interval of payoffs within each of the four treatments and doesn’t directly 

comparable across them. 

For instance, under noise 0.2, we observe that the 15 dark bars are equally high because 

each payoff happened only once without coincidence. 

Figure 1 visualizes a rightward shift in the distribution of payoffs when noise decreases. 

Indeed, under noise 1.0, the 8 payoffs (light bars) are more or less symmetrically distributed 

around 0, with the negligible average payoff –0.375. By contrast, under somewhat weaker noise 

0.6 (gray bars with solid border), subjects have won, on average, as much as –0.111, because here 

winners became more numerous than losers. When noise decreases further to 0.4 (53 observa-

tions (grey bars with dotted border)), the average payoff rises up to +0.09 and we interpret 

that as a result of better learning. 

Finally, under the weakest noise (15 observations (dark bars)) the distribution is shifted 

even more rightwards, with the average payoff 0.4. Here the best performer won 75 times. Hence, 

human subjects can cope with finding the best reply against a sophisticated opponent, provided 

its strategy is stationary. Further, results from our four treatments are on average remarkably 

consistent: the lower the noise, the better human subjects are able to beat the strategy of the Ro-

bot. Let's now turn to the other question: can subjects rationalize the reasons why they could 

beat the Robot, could they decode its strategy? To proceed, we use verbal descriptions of the 

Robot strategies solicited from the participants at the very end of the experiment. 

Several verbal descriptions were reported in the questionnaire after the experiment10. 

These descriptions were not always complete but some examples (numbered in an alphabetic-

numerical way) were suitable for interpretation and associated with a particular component of 

the player's strategy. Overall we found six different descriptions of strategies – Lose, Tie, Win, 

Last, Noise, Cycling which was mentioned by participants. In a nutshell, Lose, Tie, Win denote 

parts of the OptAR strategy, Last – a recognition that the Robot reacts to the last round Noise – 

that the Robot is somewhat irregular and randomizes, Cycling – that there are cycles in Robot's 

behavior. Hence, we wrote down several reports below and our interpretation to illustrate our 

approach of textual decomposition. 

Player 2v  (22 years old, female): «After Tie, Robot typically repeated its move. After losing 

to me, it most often took a move that beats my current move»11. Our interpretation: Player 2v  is 

mistaken about the situation Tie, but correctly reveals the useful sub-strategy Win Down→ . 

Here, as everywhere below, we assume that the player says that she has in mind to play  

                                                 
10 The full information of reports is available in the Appendix. 
11 In Russian: «После ничьих алгоритм чаще всего повторял свой вариант. После проигрыша 

алгоритм чаще всего выбирал вариант, позволяющий "побить" мой текущий вариант». 
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( ) ( )( )
( )( ) ( )( )

1 1

1 1

: 1 m  3 ,     

 : 1 ,m  3 1 m  3 ,

t t t t
i R i i

t t t t
i R i i

Tie a a a a od

Win a a od a a od

− +
−

− +
−

= ⇒ = +
= + ⇒ = −

 

keeping silence about situation lose. Finally player 2v , used term: typically' which implies non 

typical reaction leading Noise, thus Win, Tie, Noise parts of Robot were recognized. 

Player 1h  (16 years old, female): «Yes, there were regularities. Say, Robot has shown 

Rock. It expects that I will show Paper, and chooses Scissors, that is why now I should show 

Rock. Sometimes, this algorithm was switching to something else, and I tried to figure out how 

Robot behave in previous similar situations»12. Our interpretation: player 1h  supposes Ro-

bot to play the best response to some Naive strategy and therefore suggests strategy 

( ) ( )1
1 1, .t t t t

h R h Ra a a a+→ =  Though not complete, this suggestion is useful in Win situations, be-

cause it follows the best-response sub-strategy Win Up→ . So, this wrong hypothesis still al-

lows 1h  to win on average more than random. Hence only Win, part of the Robot strategy was 

recognized. 

Player 2p  (22 years old, male): «Robot was playing against my previous move but 

sometimes altered this strategy»13. Player 2p  suggests from Robot strategy 

( ) ( )1, 1 .t t t t
i R R ia a a a+

⇒ = +  Therefore, the logical th2p  strategy should be 

( ) ( )1, 1t t t t
i R i ia a a a+

⇒ = − , which turns out to be actual best-response in situation Win as well. 

Also Player 2p  mentioned that the Robot alternated between some moves. Thus we interpreted 

the latter strategy as Win, Noise. Again, this incomplete hypothesis allows winning on average 

more than 0. 

Finally, we present two hypotheses which could be somehow related to successful or 

unsuccessful strategies: 

Player 1l  (20 years old, male): «Robot was reacting to the last-move situation» Here, the 

player recognized the condition on the previous move but forgot or deliberately missed a de-

tailed description. Consequently just Last are marked by us in this case. 

Player 1o  (17 years old, female): «Robot was cycling, but sometimes it repeated its previous 

move». 

Here we must note that the latter mention of «cycling» may be actually equivalent to the 

player's best-response sub-strategy Win Down→ . Indeed, suppose that in situation Win this 

player somehow did use the best-response Down, and Robot responded with repetitions of (Up). 

Then the outcomes will be Win, Win, Win... , and the player may exploit this successful Up, Up, 

Up... sequence again and again, wrongly supposing that Robot simply intends to cycle Down, 

Down, Down.... This lucky mistake repeats until the Robot plays randomly and breaks the cycle. 

Afterward, whenever situation Win occurs again, the cycle can be exploited again. Hence the player 

reports about Cycling pattern. 

                                                 
12 In Russian: «Да, некоторые действия подчинялись правилу. Например, Робот в последнем раун-

де показал камень. Он ожидает, что я покажу бумагу, показывает ножницы, значит, нужно показать 
камень. Иногда алгоритм нарушался, и можно было смотреть, что делал он в схожих ситуациях 
в прошлых ходах». 

13 In Russian: “Робот играл против моего предыдущего хода, но иногда отклонялся от стратегии». 
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Fig. 2. The frequency of OptAR strategy among reporting and non-reporting players 

 

Many subjects have recognized more than one of these patterns, so their separate contri-
bution to performance is unfortunately not always possible. Figure 2 presents the performance 
of players who reported the six most popular patterns mentioned above against the rest of the 
strategies, aggregated over all four noise treatments. Strategies Lose, Tie, Win represent parts of 
the OptAR strategy, Last refers to recognition that the Robot plays conditional reaction to the last 
round, Noise – that the Robot is somewhat irregular and randomizes, Cycling – that there are 
cycles in Robot's behavior. Specifically Lose was mentioned by 6 players, Tie by 15, Win:12, 
Last:7, Noise:16, Cycling:11; these six relate to 6 pictures. 

In Figure 2, each of the six plots compares the performance of those who have mentioned 
features of the Robot in their post-game survey with the rest of the sample. The vertical axis Y 
shows how often this player did use OptAR strategy. Of course, the payoffs will follow the OptAR 
frequency with some noise; that is why this frequency is a more accurate measure of successful 
recognition of the Robot strategy than payoffs. 

For instance, the top player demonstrates as high as 77% usage of OptAR strategy, refle-
cted similarly in all 6 pictures. This implies a very early understanding of all 3 parts of OptAR 
strategy, though it is not reflected in the survey. By contrast, the third-best player reports un-
derstanding these 3 best-response sub-strategies (Lose, Tie, Win) and reports Noise, but keeps 
silent about understanding Robot's Last-move reaction or Robot's Cycling. That is why this third-
best player appears in the right column of Fig. 2 four times: in lose, Tie, Win, Noise pictures, 
and appears on the left in the remaining two figures (Last and Cycle). Only those five who have 
reached 0.8 also appear in each of the 6 pictures at this level. 

Finally, the boxes show the mean (in the middle) and standard deviations of the particular 
groups. The statistically significant (t-test on the figure14) recognition of Win, Tie, Noise is not 

                                                 
13 Results the same for Mann – Whitney test. 
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surprising. When the subject has recognized them, Lose situation is hard to encounter, so fewer 
subjects learned Lose strategy, therefore it is statistically insignificant. Finally, the Noise is sel-
dom recognized alone, but usually along with the other rules. 

 

3.2. Optimal strategy learning and its survey descriptions 

 

Observation 2. Optimal play correlates with the recognition of opponent’s strategy. 

We observe that those reporting best-response sub-strategies Tie Up→  (15 players) 

and especially Win Down→  (12 players), played OptAR strategy significantly more often than 

those who didn't report it. Sub-strategy Lose Stay→  was equally successful, but it was recog-

nized only by 6 players, probably because it contradicts the Naive intuitions, forbidding to «re-

peat a losing action» or because successful learning of Win Down→  cycle makes learning a plan 

for after loss unnecessarily. Players' hypotheses Last, Noise, Cycle about the Robot's behavior do 

not directly correspond to OptAR strategy, but still reflect some features of it. 

To focus our attention on best learners, Fig. 3 modifies Fig. 2 by sorting reporting learners 

according to the completeness of their reports in two ways. The left panel shows only those who 

report that they learned 0, 1, 2, or 3 out of three OptAR sub-strategies (0, 0.33, 0.66 or 1 of maxi-

mal understanding). The right one demonstrates those who report 0, 1, 2, 3, or 4 out of 6 patterns 

mentioned (though nobody reported more than 4). The vertical axis again shows the percentage 

frequency of OptAR, which coincides with the number of related moves over the 100 rounds. 

Both panels of Fig. 3 show a positive correlation (spearman coefficient 0.41 and 0.46 for 

the left and right panels, respectively; p<0.001 in both cases). Thus the better the players under-

stand the strategy of the Robot, the more often their own play is optimal, and the higher is their 

expected payoff. This is especially well visible in the right panel, which shows that most of the 

points lie on an upward-rising regression line whose slope shows that articulation of one more 

characteristic component of the optimal strategy increases the number of wins by about 10 per-

centage points. Another sizeable cluster of participants makes a substantive proportion of wins 

without any guesses. There may be multiple reasons for that: lack of incentives to report the 

truth, subconscious actions, or simply higher perceived noise in the data. 

 

 

Fig. 3. Scatter plot between the number of optimal play and number of reported parts of robot 
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Fig. 4. Correlations between performance, noise and reported strategies 

 

The correlogram (Fig. 4) shows the Spearman rank correlation coefficients significant at 

p < 0.05 or more (insignificant correlations are dropped). As one would expect, payoffs highly 

correlate with the use of the optimal strategy. Naturally, higher noise level makes learning harder – 

it negatively correlates with learning OptAR, its parts and payoffs. Reported learning of any 

OptAR sub-strategy highly correlates with two other sub-strategies, and usually also correlates 

with two other ideas – Noise and Last, but not with Cycling.  

Table 4. 

Linear regressions on sum of playing OptAR strategy 

Dependent variable 

sum of playing OptAR strategy 

 

(1) (2) (3) (4) (5) (6) 

Noise level –18.944** 

(7.495) 

–19.205** 

(7.372) 

–21.158*** 

(7.335) 

–21.216*** 

(7.297) 

–26.569*** 

(7.421) 

–22.027*** 

(7.350) 

recognition 

of last t 

4.621 

(5.794) 

     

recognition 

of noise 

6.316 

(4.468) 

6.711 

(4.249) 

    

recognition  

of cycling 

–1.291 

(4.872) 

     

recognition 

of tie 

11.228** 

(4.506) 

10.790** 

(4.430) 

12.528*** 

(4.332) 

12.841*** 

(4.251) 

14.718*** 

(4.127) 
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Continues 

Dependent variable 

sum of playing OptAR strategy  

 

(1) (2) (3) (4) (5) (6) 

recognition 

of win 

4.827 

(4.935) 

5.773 

(4.741) 

6.828 

(4.737) 

7.342 

(4.568) 

 11.133** 

(4.605) 

recognition 

of lose 

2.709 

(6.285) 

3.880 

(6.092) 

2.687 

(6.102) 

   

Constant 50.116*** 

(4.092) 

50.262*** 

(3.939) 

51.893*** 

(3.836) 

51.990*** 

(3.811) 

55.983*** 

(3.747) 

52.990*** 

(3.796) 

AIC 693.2 690.1 690.7 688.9 689.6 696 

BIC 715.2 707.2 705.4 701.1 699.4 705.8 

Observations 85 85 85 85 85 85 

R2 0.319 0.312 0.291 0.289 0.266 0.209 

Adjusted R2 0.257 0.269 0.255 0.263 0.248 0.190 

Residual  

Std. Error 13.496 13.391 13.515 13.448 13.577 14.098 

F Statistic 5.156*** 7.177*** 8.195*** 10.971*** 14.877*** 10.823*** 

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. 
 

While we have a lot of observations of rounds, when we try to analyze individuals, we 

have only 85 observations, which precludes detailed econometric analysis. However, some im-

portant correspondences can be traced down. Table 4 provides estimates of several regressions 

of various recognition factors (such as reports on parts of the Robot and noise level) on the fre-

quency of the optimal play. Noise level and recognition tie-stay (recognition of tie) part of the 

Robot are statistically significant across all specifications. Other recognized part of the Robot 

strategy, while also important from an analytic perspective, apparently are highly correlated with 

the noise and Vσ  (Tie-Stay part of OptAR), therefore in the linear model, those influences are 

not detected. This ultimately confirms the next result. 

Result 2: Noise level negatively influences performance: The lower the noise the higher is 

the number of optimal plays, rejecting Hypothesis 2. 

 

3.3. Dynamics of learning 

 

Our final two Observations (2 and 3), describe the observed dynamics of learning. 

Observation 3. There is significant heterogeneity in performance both within and 

between the subjects and across treatments. 

Fig. 5 compares three treatments: 0.2, 0.4, 0.6 noise levels. Again, the horizontal thick black 

line indicates the 33 correct moves out of 100 (which is 1/3), expected from Random player, 

and the dotted line shows the 0.05 confidence interval. 
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Fig. 5. Frequencies of optimal actions for each player 

 

The players within each treatment are put in decreasing order by OptAR strategies played 

during 100 rounds (Y  axis). Under low noise 0.2, as much as 13 out of 15 players are better than 

random (score 33 of optimal moves), and, moreover, 11 of them exceed this barrier on a statis-

tically significant level! 

Under higher noise 0.4, about 2/3 of players perform better than random, and about 1/3 

of this cohort – significantly so. Even under high noise 0.6, 2/3 (6 out of 9) players show playing 

better than Random, but only 2 cases can be called statistically significant «learning.» 

Each column represents the playing trajectory of a certain player, divided into 10 unequal 

segments. Each segment's height represents the number of OptAR strategies played during 

10 rounds. They are ordered from the earlier ones at the bottom to the latest at the top. Color 

intensity also reflects the frequency of playing OPtAR, ranging from dark to light colors. The 

darkest and longest segments present the most frequent use of OptAR strategy during the next 

10 rounds. 

One could expect that typically the columns would be lighter (shorter) at the beginning of 

the game and darker in the end. Alas, such a tendency is more or less pronounced only for a sub-

set of agents. Probably (as often reported in learning literature), the agents «fluctuate between 

the exploitation of the ideas grasped already and exploration of additional ideas possible. This 

trade-off may cause the fastest learners to often deviate from their optimal strategy and thereby 

perform similarly to slower learners. 

However, on average the whole population becomes «darker» closer to the end of the 

game. Again it is evident that the lower the noise – the greater the learning on average, but we 

can clearly see that the best players in high-noise groups outperform the worst learners in low-

noise groups. 
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Observation 4. Best 12 learners show rather monotone learning trajectories, their 

number of gains learning becoming systematically above the Nash equilibrium propor-

tion around 60th round. 

Fig.6 shows the dynamics of play for 12 selected learners among all 3 treatments who 

described «Win-Down» part of the Robot correctly. The X axis denotes rounds, and the Y  axis 

the normalized (subtracting the expected gain of 0.33) frequency of playing OptAR strategy. 

Vertical lines with triangles at the top end show the average result this cohort, while squares on 

the same lines show the point when frequency of cumulative OptAR strategies that would imply 

significant outperformance of the random strategy according to z-test with p < 0.05. When the 

triangle-ended «overtakes» the squared one, it can be taken as «learning». We observe that this 

significant «learning moment» for this group occurs roughly after the 50th round. 

 

 

Fig. 6. Individual dynamics of learning for several players who described «win–down» part  

of the Robot correctly 

 

We see that two players, c  and h , seem to start determining exploration very early, 

about the 10th or the 20th round, which explain their outperformance over the random strategy 

by over 40 towards the end of the game. By contrast, a group of eight «rather good learners» have 

fluctuating payoffs, with 15 to 35 optimal plays by the end of the game. Finally, a group of 2 

players just fluctuates near-zero (below squares at 100th round), ending up with an insignificant 

result. There are two possible explanations for their level of performance: either they have dis-

covered this pattern too late for it to have an effect on their success or they were too interested in 

exploration at the expense of exploiting the pattern that they have discovered. 
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4. Comparing the models to human learning process 
 

4.1. Simulations: Comparison of models' success in payoffs 

 

We test our hypotheses 3 and 4 via comparing the performance of learning models against 

the Robot rule by simulations. In our simulations, we set each of the four algorithms mentioned 

in Section 2 playing as humans played in our treatments. Namely, one «simulation treatment» in-

cluded 1000 attempts of an algorithm to play 100 rounds of RPS game against the Robot. Each 

algorithm played under 40% noise, at which level approximately half of the subjects have out-

performed the random guesser (see Fig. 5)15. The summary of the results is in Appendix A1. 

We compare the performance of the algorithms to that of humans using the proportions 

z test. The null hypothesis 0H  here is that the proportion of wins in 100 rounds should be ap-

proximately 0.33 (equal shares of Win, Tie, Lose), which corresponds to Nash equilibrium (ran-

dom) play. The opposite two-sided hypothesis 1H  is that the proportion of wins is not equal 

0.33. Results of related tests are presented in Table 5, which compares several algorithms' and 

human experimental results. Proportions z test of number of wins (win ratio). 

Table 5. 

Proportions z test of number of wins (win ratio), noise level = 0.4 

Data source Number of 

playing pairs 

z-stat. p-value Test type Mean 

Lab. subjects      53      7.854    0.0 larger 0.417 

SRL 1000   39.385    0.0 larger 0.391 

SWFP 1000   61.298    0.0 larger 0.426 

WFP 1000   –0.201 0.84 two-sided    0.33 

RL 1000 –13.855    0.0 smaller    0.31 

 

Table 5 sums up the most illustrative z-test results (see the complete table in Appendix A1). 

For human subjects, the 0H  hypothesis is rejected, they outperform the random player, as well as 

SRL and SWFP algorithms. 

On the contrary, for action-based algorithms hypothesis 0H  (about their equivalence to a 

random player) is not rejected. WFP algorithm plays as good as a random player. Moreover, RL 

plays slightly (statistically insignificantly) worse than random, probably, because it is adaptive, 

like the Naive player whom our Robot is programmed to defeat. Noticing the advantage of the 

strategic algorithms over the random player and over the action-based ones, we make the fol-

lowing conclusions about our hypotheses 3 and 4.  

Result 3. Standard action-based models WFP and RL do not outperform the random predic-

tor when playing against Robot. Hypothesis 3 is rejected. 

Result 4. Action-based models do not outperform their strategic analogs when playing 

against the Robot. Hypothesis 4 is rejected. 

                                                 
15 Simulations with noise levels of 60% and 20% are contained in the Appendix. 
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4.2. Comparison of models' predictive performance 

 

Now consider Fig. 7 which illustrates the difference among the learning algorithms in dy-

namics. It presents the cumulative sums of optimal strategy play over every 20 rounds among 

100 rounds. The X  axis shows intervals 0–20, 21–40, 41–60, 61–80, 81–100, including five 

treatments in each: action-based WFP, action-based RL, humans, SRL and SWFP. For each treat-

ment/interval the Y  axis shows the fraction (%) of Optimal moves short of the fraction explai-

ned by chance (33%), presenting the average (middle of each box), Q1–Q3 interquartile range 

(box), and the whole range of interval of observations (whiskers). For instance, we see that in the 

last period SWFP on average outperforms the random predictor for as much as 23% of moves, 

whereas RL performs worse than random. SRL dynamic behavior appears to be the closest to 

human behavior here. 

Generally, as it can be seen from z-test and Fig. 7, the share of optimal (probably winning) 

moves among our action-based algorithms WFP, RL is close to random share or lower. On the 

contrary, we see that both strategic algorithms and human subjects do learn. They recognize 

the opponent's behavior and therefore defeat the Robot. Naturally, the shares of optimal moves 

differ among algorithms in the same direction as the shares of wins differ (all actual tests' re-

sults is also provided in Appendix A1). 

 

 

Fig. 7. Learning dynamics, noise 0.4  

(subject sample includes University student + High school students) 

 

Further, to test the hypothesis 5, we analyze the predictive power of each algorithm using 

Brier/quadratic. These scoring rules are widely used in computer science [Gneiting, Raftery, 

2007], forecasting [Satopaa et al., 2014] and experimental economics [Mathevet, Romero, 2012]. 
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Our results appear similar for all three rules. However, since Brier takes into account the 

probabilities of all actions (chosen actions and also potential actions), it is more suitable for 

learning models. The Brier rules is a quadratic deviation, squared difference between the proba-

bility of an action and its realized outcome:  

(9)  ( )2

1 1

1
.

JN
ti tit i

Brier score Probability Outcome
N = =

− = −∑∑  

In our case, N  is the number of rounds, J  is the number of actions16. 

To build the Brier-score, the predictive ability of each model in the role of «Probability» 

was compared to human experimental data in the role of «Outcome». To perform this, complete 

history of each couple Human-Robot is taken from the experimental data. Further, using this per-

sonal history, we set the alternative player (one of the models) to formulate its forecast for each 

move in 100 rounds series. The algorithmic player perceives the data of the first player (human 

subject) as its own historical moves, and the history of moves of the opponent (Robot) as sup-

plementary data. The Brier-score is counted for the history of each quadruple (Algorithm-Robot, 

Human-Robot) over the entire series of their 100 rounds. This procedure was carried out cross-

wise for each type of alternative algorithm and each experimental pair Human-Robot. Results 

are presented in Fig. 8. 
 

 
Kruskal-Wallis test for two group with closest mean Brier *** < 0.001; ** < 0.01; * < 0.05. 

Fig. 8. Prediction quality (Brier-scores) of human learning by the algorithms 

                                                 
16 In the best scenario the Brier value would be equal to zero, in the worst equal to 2, and the ran-

dom forecast is caught relational on the number of actions. In the case 3×3 game, a random forecaster 

produces Brier equal to 0.66. 
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Consistent with the previous (dynamic) result and supporting our Hypothesis 5, SFP and 

SRL have lower Brier scores, i.e., higher accuracy in predicting human moves than other algo-

rithms under consideration. Figure 8 shows the resulting statistics of Brier-scores aggregated 

over each of our 85 human subjects, separated by noise treatments.  

Nonparametric test (Kruskal – Wallis) confirmed the significance of the differences be-

tween predictions of the strategy-based and action-based models (see Fig. 8). Consistent with 

other performance criteria, we find that SRL demonstrates better results in predictive metrics 

for all groups with a lower noise level. 

Result 5. SRL gets ahead of action-based and SFP ones by predictive metrics evaluated on 

experimental data. Hypothesis 6 is rejected. 

Result 6. Belief-based strategic WFP predict experimental subjects worse than SRL. Hy-

pothesis 3 is also rejected. 

We can interpret these results and comparisons as follows. Action-based FP as a predictor 

performs equally badly at all noise levels, whereas the performance of action-based RL is some-

what lower, and that of SRL much lower at larger noise. We have seen that people verbally de-

scribe our Robot in terms of its «intentions» and play accordingly. This could suggest that FP 

algorithm better corresponds to their decision-making process than RL. However, our simula-

tions show that SFP performs well only in the low-noise scenario. By contrast, SRL predicts hu-

mans well in all circumstances, in particular, it reflects some regularities in human behavior even 

when the Robot is totally random. 

Our explanation of this contradictory evidence is that our human subjects had formulated 

their FP-like hypotheses (verbally pronounced at the end of the game) only after sufficiently 

long periods of RL-like behavior. Thus, SFP learns «too fast», predicting the speed of human 

behavior over the learning window worse than the SRL predictor does. 

 

Conclusion 
 

We have explored the noisy Rock-Paper-Scissors repeated game and compared «humans 

against Robot» settings with «learning algorithms against Robot» settings. We focused on two 

distinctions: action-based vs. strategy-based learning, or belief-based vs. reinforcement learning. 

The general observations on humans confirm that: (a) many people are capable to defeat 

our simple Robot; (b) usually it happens in the span of 30–60 rounds, depending on the noise le-

vel; (c) people whose behavior shows learning the algorithm often can explain what they have 

learned, typically in belief-based terms, but it is not always the case; (d) among three parts of 

the optimal strategy, Tie → Up and Win → Down are more easily learned. 

We have compared the standard action-based models, namely, WFP and RL with a more 

modern strategy-based approach [Hanaki, 2004; Ioannou, Romero, 2014]. We significantly ex-

tended this approach by focusing on partial, «elementary strategies» instead of complete auto-

mata. Our post-game surveys show that the actual process of learning is closer to our frame-

work: people can learn one elementary strategy of the Robot but no others. Additionally, our 

free-form survey shows that people tend to describe their opponent in terms of some elemen-

tary strategies, not as a complete automaton even when they recognize all its parts. Further to 

that, our solution circumvents the curse of dimensionality for the automata. We do not need long 

series and large comprehensive sets of possible automata, we can «construct» them from basic 

elementary strategies as the game goes on. 
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Our sophisticated «strategy-based» versions learn to defeat the Robot; WSFP learn faster 

than SRL. However, it learns too fast: SRL better approximates human learning dynamics than 

WSFP. Moreover, SRL is the only model explored that predicts human behavior better than the 

random predictor in all our treatments, including a completely random Robot. 

Both our descriptive picture of human learning and our attempts to model such learning 

suggest (though do not prove) that a strategic approach can better describe humans in some 

games, namely, those similar to RPS game in some respects. Can we directly transfer our empiri-

cal and modeling findings to other games? May be no. Rather, we present here a way to approach 

complex adaptive behavior in those other games. It is an open question whether a universal mo-

del to all learning situations can be constructed but if it is, our approach provides the necessary 

building blocks to it. This we expect from it help in investigating learning in a broader context. 

As to extensions, a broader study should find more precise stratification of learner’s types and 

more clear approximation within an individual subject's play path. 

 

 

Appendix. 
 

A1. Z-test results 
 

If p-value is less than a given significance level, then the null hypothesis is rejected in 

favor of the alternative. The null hypothesis here is that the single sample given by proportion 

of wins in 100 rounds was drawn from a distribution with the proportion equal random (0.33). 

Two-sided criterion postulates 1H  that proportion of wins not equal to 0.33 (larger > 0.33, 

smaller < 0.33). 

Table 6.  

Noise level Data source Variable Z-stat p-value Test type Mean 

0.4.HSch lab.subjects ratio of opt play 3.8 0.0 two-sided 0.359 

0.4 lab.subjects ratio of opt play 3.742 0.0 two-sided 0.379 

0.6 lab.subjects ratio of opt play 1.127 0.26 two-sided 0.348 

1 lab.subjects ratio of opt play 0.097 0.92 two-sided 0.332 

0.4 stategic.RL ratio of opt play 64.725 0.0 two-sided 0.431 

0.4 strat.weighted.FP ratio of opt play 106.215 0.0 two-sided 0.498 

0.4 WFP ratio of opt play 1.551 0.12 two-sided 0.332 

0.4 RL ratio of opt play –18.332 0.0 two-sided 0.303 

0.4.HSch lab.subjects ratio of opt play 3.8 1.0 smaller 0.359 

0.4 lab.subjects ratio of opt play 3.742 1.0 smaller 0.379 

0.6 lab.subjects ratio of opt play 1.127 0.87 smaller 0.348 

1 lab.subjects ratio of opt play 0.097 0.54 smaller 0.332 

0.4 stategic.RL ratio of opt play 64.725 1.0 smaller 0.431 
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Continues 

Noise level Data source Variable Z-stat p-value Test type Mean 

0.4 strat.weighted.FP ratio of opt play 106.215 1.0 smaller 0.498 

0.4 WFP ratio of opt play 1.551 0.94 smaller 0.332 

0.4 Rl ratio of opt play –18.332 0.0 smaller 0.303 

0.4.HSch lab.subjects ratio of opt play 3.8 0.0 larger 0.359 

0.4 lab.subjects ratio of opt play 3.742 0.0 larger 0.379 

0.6 lab.subjects ratio of opt play 1.127 0.13 larger 0.348 

1 lab.subjects ratio of opt play 0.097 0.46 larger 0.332 

0.4 stategic.RL ratio of opt play 64.725 0.0 larger 0.431 

0.4 strat.weighted.FP ratio of opt play 106.215 0.0 larger 0.498 

0.4 WFP ratio of opt play 1.551 0.06 larger 0.332 

0.4 RL ratio of opt play –18.332 1.0 larger 0.303 

0.4.HSch lab.subjects win ratio 8.84 0.0 two-sided 0.4 

0.4 lab.subjects win ratio 7.855 0.0 two-sided 0.435 

0.6 lab.subjects win ratio 2.574 0.01 two-sided 0.372 

1 lab.subjects win ratio 0.699 0.48 two-sided 0.342 

0.4 stategic.RL win ratio 39.386 0.0 two-sided 0.391 

0.4 strat.weighted.FP win ratio 61.299 0.0 two-sided 0.426 

0.4 WFP win ratio –0.202 0.84 two-sided 0.33 

0.4 RL win ratio –13.856 0.0 two-sided 0.31 

0.4.HSch lab.subjects win ratio 8.84 1.0 smaller 0.4 

0.4 lab.subjects win ratio 7.855 1.0 smaller 0.435 

0.6 lab.subjects win ratio 2.574 0.99 smaller 0.372 

1 lab.subjects win ratio 0.699 0.76 smaller 0.342 

0.4 stategic.RL win ratio 39.386 1.0 smaller 0.391 

0.4 strat.weighted.FP win ratio 61.299 1.0 smaller 0.426 

0.4 WFP win ratio –0.202 0.42 smaller 0.33 

0.4 RL win ratio –13.856 0.0 smaller 0.31 

0.4.HSch lab.subjects win ratio 8.84 0.0 larger 0.4 

0.4 lab.subjects win ratio 7.855 0.0 larger 0.435 

0.6 lab.subjects win ratio 2.574 0.01 larger 0.372 

1 lab.subjects win ratio 0.699 0.24 larger 0.342 

0.4 stategic.RL win ratio 39.386 0.0 larger 0.391 
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Continues 

Noise level Data source Variable Z-stat p-value Test type Mean 

0.4 strat.weighted.FP win ratio 61.299 0.0 larger 0.426 

0.4 WFP win ratio –0.202 0.58 larger 0.33 

0.4 RL win ratio –13.856 1.0 larger 0.31 

0.6 stategic.RL ratio of opt play 43.931 0.0 two-sided 0.398 

0.6 strat.weighted.FP ratio of opt play 75.235 0.0 two-sided 0.448 

0.6 WFP ratio of opt play 2.762 0.01 two-sided 0.334 

0.6 RL ratio of opt play –21.854 0.0 two-sided 0.298 

0.6 stategic.RL ratio of opt play 43.931 1.0 smaller 0.398 

0.6 strat.weighted.FP ratio of opt play 75.235 1.0 smaller 0.448 

0.6 WFP ratio of opt play 2.762 1.0 smaller 0.334 

0.6 RL ratio of opt play –21.854 0.0 smaller 0.298 

0.6 stategic.RL ratio of opt play 43.931 0.0 larger 0.398 

0.6 strat.weighted.FP ratio of opt play 75.235 0.0 larger 0.448 

0.6 WFP ratio of opt play 2.762 0.0 larger 0.334 

0.6 RL ratio of opt play –21.854 1.0 larger 0.298 

0.6 stategic.RL win ratio 19.357 0.0 two-sided 0.359 

0.6 strat.weighted.FP win ratio 30.56 0.0 two-sided 0.377 

0.6 WFP win ratio –0.599 0.55 two-sided 0.329 

0.6 RL win ratio –10.674 0.0 two-sided 0.314 

0.6 stategic.RL win ratio 19.357 1.0 smaller 0.359 

0.6 strat.weighted.FP win ratio 30.56 1.0 smaller 0.377 

0.6 WFP win ratio –0.599 0.27 smaller 0.329 

0.6 RL win ratio –10.674 0.0 smaller 0.314 

0.6 stategic.RL win ratio 19.357 0.0 larger 0.359 

0.6 strat.weighted.FP win ratio 30.56 0.0 larger 0.377 

0.6 WFP win ratio –0.599 0.73 larger 0.329 

0.6 RL win ratio –10.674 1.0 larger 0.314 

0.2 lab_subjects ratio of opt play 21.249 0.0 two-sided 0.601 

0.2 lab_subjects ratio of opt play 21.249 1.0 smaller 0.601 

0.2 lab_subjects ratio of opt play 21.249 0.0 larger 0.601 

0.2 lab_subjects win ratio 16.328 0.0 two-sided 0.542 

0.2 lab_subjects win ratio 16.328 1.0 smaller 0.542 
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Continues 

Noise level Data source Variable Z-stat p-value Test type Mean 

0.2 lab_subjects win ratio 16.328 0.0 larger 0.542 

0.2 stategic.RL ratio of opt play 31.644 0.0 two-sided 0.441 

0.2 strat.weighted.FP ratio of opt play 86.445 0.0 two-sided 0.626 

0.2 WFP ratio of opt play 0.8103 0.42 two-sided 0.333 

0.2 RL ratio of opt play –8.293 0.0 two-sided 0.303 

0.2 stategic.RL ratio of opt play 31.644 1.0 smaller 0.441 

0.2 strat.weighted.FP ratio of opt play 86.445 1.0 smaller 0.626 

0.2 WFP ratio of opt play 0.810 0.79 smaller 0.333 

0.2 RL ratio of opt play –8.293 0.0 smaller 0.303 

0.2 stategic.RL ratio of opt play 31.644 0.0 larger 0.441 

0.2 strat.weighted.FP ratio of opt play 86.445 0.0 larger 0.626 

0.2 WFP ratio of opt play 0.810 0.21 larger 0.333 

0.2 RL ratio of opt play –8.293 1.0 larger 0.303 

0.2 stategic.RL win ratio 25.635 0.0 two-sided 0.419 

0.2 strat.weighted.FP win ratio 65.783 0.0 two-sided 0.561 

0.2 WFP win ratio 0.390 0.7 two-sided 0.331 

0.2 RL win ratio –7.396 0.0 two-sided 0.306 

0.2 stategic.RL win ratio 25.635 1.0 smaller 0.419 

0.2 strat.weighted.FP win ratio 65.783 1.0 smaller 0.561 

0.2 WFP win ratio 0.390 0.65 smaller 0.331 

0.2 RL win ratio –7.396 0.0 smaller 0.306 

0.2 stategic.RL win ratio 25.635 0.0 larger 0.419 

0.2 strat.weighted.FP win ratio 65.783 0.0 larger 0.561 

0.2 WFP win ratio 0.390 0.35 larger 0.331 

0.2 RL win ratio –7.396 1.0 larger 0.306 

 

A2. Instructions 

 

General. Welcome to the experimental session. You have to make some decisions, and 

You will get the opportunity to earn money. How much you earn will depend on your decisions, 

and on the decisions of your opponent. Therefore, it is very important that you carefully read these 

instructions. The money that is prescribed to you by the result of the experiment will be paid to 

you in cash at the end of the experimental session. Your decisions, as well as your results, are 

anonymous. We guarantee the confidentiality of your decisions and answers, and we will ana-



534 HSE Economic Journal  No 4
 

lyze them only in depersonalized. These instructions are for your personal use only. Throughout 

the experimental session, you are not allowed to communicate with other participants. Viola-

tion of this rule may lead to removing from the experiment and losing all the experiment's money. If 

you have any questions, please raise your hand. We will approach your workplace and answer 

your questions individually. 

 During the experiment, we will not use rubles but will use tokens (conventional mone-

tary units of the experiment). At the end of the experimental session, this result in tokens will be 

converted into rubles at the rate 3 rubles to 1 token, besides, you will receive a participation fee 

of 150 rubles. At the end of the session, each participant will receive their money individually. 

This experimental session consists of 100 rounds. You have to make 1 decision in each round, in 

the game Rock-Paper-Scissors. For each move, you will be given 45 seconds. 

Rules. In each round, you need to choose one of three possible actions: Rock, Scissors or 

Paper. Your opponent does the same regardless of you. The winner in each round is determined 

by the following rule: paper conquers rock; rock defeats scissors; scissors beat rock. If both players 

have chosen the same action, the outcome of the round is a tie. 

The opponent. A computer program will play with you as an opponent. The actions of 

the program are managed by the algorithm. There are several things which are known about the 

algorithm: At the time of making a decision in each round, it does not know your action in the cur-

rent round. Information about the actions of both participants (both yours and hiss) in previous 

rounds are available to its. The program algorithm does not change throughout the game. The al-

gorithm could be determined by a certain rule (regularity), but could be not. Knowing the rule will 

allow you to better predict the actions of the opponent (computer program). You know nothing 

more about its algorithm.  

Compensation. For each win in each round, 2 tokens are awarded to you, for a tie – 1 token, 

for losing to you – 0 tokens. The number of tokens is charged by the result is shown in table 7. 

Table 7.  

Payor matrix 

Robot\human Rock Paper Scissors 

Rock 1 2 0 

Paper 0 1 2 

Scissors 2 0 1 

 

In addition, a bonus of 15 tokens is awarded for every five wins starting from 30 (see tab-

le 8). For example, the bonus for 4 wins will be 0 tokens, for 30 wins – 15 tokens, for 41 wins 

30 tokens. You can get maximum bonus points for a series of 100 wins, then the bonus will be 

225 tokens. That is, your total gain in tokens will be calculated by the formula:  

( ) ( ) ( )_ _ _ _ 2 _ _ 1 15.Win in tokens Number of Wins Number of ties Bonus= ⋅ + ⋅ + ⋅  

Where the bonus is an incomplete quotient of dividing the Number of Wins, starting 

from 30 with step 5.  

Examples. With the result of the game 33 wins 33 ties 33 losses the player, his winnings 

will be: (33) × 2 + (33) × 1 + ([33/5]) × 15 = 66 + 33 + 15 = 114 tokens, then the gain in rubles ex-
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cluding payment for participation will amount to 342 rubles, together with payment for partici-

pation 492 rubles. When the result of the game is 50 wins 25 ties 25 losses the player, his winnings 

will be: (50) × 2 + (25) × 1 + ([50/5]) × 15 = 100 + 25 + 75 = 200 tokens, then the gain in rubles 

without payment for participation will be – 600 rubles, along with payment for participation 

750 rubles. With the result of the game 100 wins 0 ties 0 losses the player, his winnings will be: 

(100) × 2 + (0) × 1 + ([100/5]) × 15 = 200 + 0 + 225 = 425 tokens, then the gain in rubles without 

payment for participation will amount to 1275 rubles, together with payment for participation 

1425 rubles. 

Table 8.  

Additional incentive scheme 

Wins 30–

34 

35–

39 

40–

44 

45–

49 

50–

54 

55–

59 

60–

64 

65–

69 

70–

74 

75–

79 

80–

84 

85–

89 

90–

94 

95–

99 

100 

Bonus 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 

 

 

A3. Reports about robot play by subjects 

 

Table 9.  

Verbalized strategies reported by participants 

ID REC-

OGN_LAST_T 

REC-

OGN_NOISE 

REC-

OGN_CYCLING 

REC-

OGN_TIE 

REC-

OGN_WIN 

REC-

OGN_LOSE 

l2 1 0 0 0 0 0 

p2 1 1 0 0 1 0 

p2 0 1 1 0 0 0 

q2 0 1 1 1 0 0 

t2 0 1 0 1 0 0 

u2 1 0 0 0 0 0 

v2 0 1 0 0 0 0 

v2 0 1 0 1 1 0 

y2 0 0 0 0 0 1 

y 0 0 0 0 1 0 

g1 0 0 0 1 0 0 

h1 0 1 0 0 1 0 

i1 1 0 0 0 0 1 

m1 1 0 0 1 1 1 

n1 0 0 1 1 0 0 
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Continues 

ID REC-

OGN_LAST_T 

REC-

OGN_NOISE 

REC-

OGN_CYCLING 

REC-

OGN_TIE 

REC-

OGN_WIN 

REC-

OGN_LOSE 

o1 0 0 1 0 0 0 

p1 0 0 0 0 0 1 

u1 0 0 0 0 1 0 

v1 0 0 1 0 0 0 

w1 0 0 0 1 1 0 

x1 0 1 1 0 0 0 

y1 0 0 0 1 1 1 

e2 0 1 0 0 1 0 

f2 0 0 0 1 0 0 

g2 0 1 1 0 0 0 

q 0 0 0 0 1 0 

u 0 0 1 0 0 0 

a 1 1 0 0 1 0 

b 0 1 1 1 0 0 

c 0 1 0 1 1 1 

e 0 1 0 1 0 0 

h 1 0 0 1 1 0 

i 0 0 1 0 0 0 

j 0 0 0 1 0 0 

l 0 1 0 1 0 0 

n 0 0 1 0 0 0 

 

 

 

 

∗   ∗ 
∗ 
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